

LA-UR-14-26748

Approved for public release; distribution is unlimited.

Title: Cross Section Measurements at LANSCE for Defense, Science and

Applications

Author(s): Nelson, Ronald Owen

Intended for: Fifteenth International Symposium on Capture Gamma-Ray Spectroscopy

and Related Topics, 2014-08-25 (Dresden, Germany)

Issued: 2014-08-27

Cross Section Measurements at LANSCE for Defense, Science and Applications

R. O. Nelson

LANSCE-NS

Los Alamos National Laboratory

International Conference on

Nuclear Data for Science and Technology

Dresden, Germany

25-29 August, 2014

Outline

- LANSCE
- Facilities
 - New RF Driver (201 MHz)
- User program
 - Changes to User Program for Material Science
 - Nuclear Science User Program continues
- Cross section measurements
 - GEANIE data and model development
 - » Reference cross sections
 - Chi-Nu and inelastic measurements
 - Fission cross sections TPC, SPIDER
 - Total cross sections for neutron capture cross sections
- Summary

LANSCE Neutron Sources Cover Energies for Most Applications

LANSCE Neutron sources

Nuclear Science research is performed Los A at many experimental areas at LANSCE

Many Instruments have been developed for nuclear science measurements at LANSCE

GEANIE (n,xγ)

SPIDER

Chi Nu $(n,xn+\gamma)$

Fission

DANCE (n,γ)

TPC

Neutron Flight Paths at LANSCE/WNR

Nuclear Science User Statistics

Unique Users 2012 National

GEANIE at LANSCE/WNR Provides High-Resolution (n,xnypzαγ) Data Over a Wide Neutron Energy Range

- Combination of planar Ge (x-ray and γ) detectors and coaxial Ge detectors 26 total
- Photon energy range 15 keV < E_γ
 9 MeV
- BGO background suppression shields
- Measure gamma-ray pulse height, neutron time of flight, 100 keV < E_n < 400 MeV</p>
- Built using elements of the former HERA array from LBL
- Collaboration with LLNL and CEA Bruyères-le-Châtel

GEANIE γ -ray Spectrometer Array

Nelson - LANSCE, LANL

The Search for More Suitable γ-Ray Cross Section Reference Candidates

- Several candidate samples were measured, but rejected for a variety of reasons
 - Nb previously unknown isomers
 - In previously unknown isomers
 - Au isomers, nearby background lines
 - V activation by (n,p), angular anisotropy, low $E\gamma$
- Ti similar to Fe, with some advantages
 - Less contribution from (n,p) activation
 - Excellent physical properties
 - Large cross section and 74% ⁴⁸Ti
- Li showed promise LiF proved to have suitable properties
 - Available as LiF optical windows
 - Not hygroscopic
 - Chemically pure, especially UV windows (92.4% ⁷Li)
 - Fluorine strong gammas (110 & 197 keV) may be useful.

Properties of Li, and Ti for Reference Cross Section Use

Sample	⁷ Li	⁴⁸ Ti
E _n (MeV)	1-8 MeV	4-15 MeV
Eγ(keV)	478	983
Sigma(mb)	>100, 250 max	>600, 1200 max
E _n (MeV)		14-18 MeV
Eγ(keV)		160
Sigma(mb)		160-300
Source material	LiF UV optical windows	High-purity rolled metal foils
Issues	¹¹ B(n,αγ) ⁷ Li – boron shielding, isotopic composition determination	Angular anisotropy, (n,p) activation En>5 MeV – $t_{1/2}$ =44 h, smaller cross section than Fe(n,p)

GEEL & LANSCE LiF(n,n' γ) 478 keV preliminary data compared to the CSISRS database (both n and γ)

Neutron Inelastic Scattering Cross Section for 48 Ti(n,n' $_{\gamma}$)[74%] + 49 Ti(n,2n $_{\gamma}$)[5.4%]

Prompt fission neutron spectra measurements with the Chi-Nu arrays at LANSCE

Prompt fission neutron emission spectra and evaluations/calculations

The Chi-Nu neutron detector arrays

54 Liquid scintillators – 1.0 m flight path

22 ⁶Li-glass scintillators – 0.4 m flight path

Chi-Nu can be used with gamma-ray gating for inelastic neutron reaction studies

- Using Ge or higher efficiency good resolution gammaray detectors to tag events, for example, using the 2+ to 0+ gamma rays from inelastic scattering on an eveneven nucleus
- The measured neutron spectrum provides information on the excitation energy of the nucleus and the energy and angle distributions of the emitted neutrons
- This was demonstrated previously with the FIGARO detector array at LANSCE

Time Projection Chamber (TPC) a LANL-LLNL Project

High-precision fission measurements are being performed with LLNL and Universities

- High precision fission cross section measurements are needed for both Defense Programs as well as Nuclear Energy
- Past measurements with parallel plate ionization chambers have been limited by backgrounds from α particles.
- We are developing a new approach (with LLNL) for measuring fission cross sections that uses a Time Projection Chamber (TPC).

Anode is pixelated in XY plane and each pixel is sampled as a function of time (Z)

Time Projection Chamber

Time Projection Chamber will improve on past measurements

- TPC collection foil with pixilated collection plane
- TPC allows 3-D event track reconstruction
- TPC allows particle identification. Alphas are clearly differentiated from fission fragments
- Measurements will be made relative to ²³⁵U and n-p standard cross sections
- This is significant effort with LLNL, INEL and 6 universities with support from NNSA and NE

2 α -particle tracks

SPectrometer for Ion DEtermination in Fission Research (SPIDER)

SPIDER

- Fragment time-of-flight (TOF) spectrometer
 - Measures TOF and kinetic energy of both fragments in coincidence
 - Correlates fragment mass, charge and energy
- Resolution
 - Mass: 1 amu for light fragments, 1.5 amu for heavy
 - Charge: 1 unit charge for light fragments (heavy fragment charge obtained from charge conservation)
 - Energy: 0.5-1.0%
- Experiments at the Los Alamos Neutron Science Center (LANSCE)
 - Incident neutrons ranges from thermal to several hundred MeV (moderated and un-moderated spallation targets)
 - Neutron time-of-flight to measure incident neutron energy

Timeline

- Dual-arm spectrometer completed August 2013
- Thermal fission yields for U-235 and Pu-239
 - Beam experiments Sept.-Nov. 2013
 - Preliminary results March 2014
 - Finalized mass yields August 2014
- Fast-neutron induced fission yields for U-235 and Pu-239
 - Complete scaled-up of spectrometer August 2014
 - Beam experiments in 2014 and 2015
 - U-235 mass yields (E = 1 15 MeV) in 2015

Pu-239 mass yields (E = 1 - 15 MeV) in 2016

Timing detector assembly for the SPIDER spectrometer

Using Total Cross Section Measurements to Infer Neutron Capture Cross Sections Beyond the Reach of Direct (n,γ)

- Los Alamos Report Paul Koehler, LA-UR-14-21466
- Determine average resonance spacing, D_0 , and neutron strength function, S_0 , values
- Use the Nuclear Statistical Model to calculate the capture cross section

FIG. 1: Energy-reduced widths for 151 Sm neutron resonances from Ref. [3] (open blue circles). The red curve depicts the threshold used for obtaining corrected average resonance spacing (D_0) and neutron strength function (S_0) values. See text for details.

FIG. 2: $^{151}\mathrm{Sm}(n,\gamma)$ cross section in the unresolved-resonance range. Symbols depict results from three different measurements [7-9], and the solid black curve is the cross section predicted by TALYS after adjustment to the average resonance parameters determined from the earlier $^{151}\mathrm{Sm}+n$ total cross section measurement [3].

Plans to Develop Neutron Total Cross Section Measurements at LANSCE

- Use small (as low as 10 microgram) samples
 - Approx. 0.5 mm diameter
 - Tight collimation
- Good geometry total cross section measurements
 - Samples can be very radioactive and not affect the measurement (~ 10 meters to detector)
- Cross sections of interest for astrophysics and applications – 25 nuclei of interest are good candidates for measurement at LANSCE

Summary

- A wide variety of cross section measurements are performed at LANSCE
 - Neutron-induced gamma-ray measurements
 - » Gamma Ray reference cross sections for MeV neutrons
 - Neutron-induced fission measurements
- Operation of the accelerator at full duty cycle starts in October 2014
- All LANSCE Neutron production targets will continue operating
- The LANSCE Nuclear Science User Program had a record number of users in 2013 and continues in 2014
- New initiatives are planned to expand capabilities
 - Elastic and inelastic neutron scattering
 - Total cross sections for small and radioactive samples
 - » infer neutron capture cross sections

Thank you for your attention.

